Sequence CoreBuild | AI Conceptual Code Scripts
At Sequence CoreBuild, we specialize in creating AI conceptual models as pure code scripts. Our unique approach combines innovative AI-driven frameworks with executable code to help businesses solve complex challenges with scalable, ready-to-deploy solutions.
What We Offer
- Tailored AI models that transform ideas into executable scripts.
- Scalable frameworks for industries like finance, healthcare, and e-commerce.
- Seamless integration with your current systems and workflows.
- Efficiency in solving real-world complex problems through AI.
How It Works
We begin by understanding your unique business challenges. Then, we build a customized AI conceptual model that outlines the solution in code script form. This model is not only structured but also ready for execution and deployment, providing the scalability you need.
Applications of Our AI Models
- Automating decision-making processes in financial services.
- Improving diagnostic systems in healthcare.
- Enhancing customer personalization in e-commerce.
- Optimizing operations in manufacturing and logistics.
What's New CoreBuild?
Our AI system monitors driver emotions, predicts maintenance, and analyzes real-time vehicle data. Below is a preview of its core code components.
Code Preview
if sensor_data['engine_temp'] > 105: trigger_alert("Engine Overheat Warning") if not imu_status['stable']: log_issue("Vehicle drift detected")
emotion = analyze_voice_tone(driver_voice) if emotion == "anger": suggest_rest_stop("Driver appears stressed")
Multi-Modal Chatbot - Code Samples
import nltk
from nltk.chat.util import Chat, reflections
pairs = [
(r"hi|hello", ["Hello there!", "Hi! How can I help you?"]),
(r"how are you?", ["I'm a chatbot, I'm always fine!"]),
]
def start_chat():
print("Chatbot: Hi, I am here to assist you!")
chat = Chat(pairs, reflections)
chat.converse()
start_chat()
Open Architecture Design
ROOT
│
├── Frontend (UI & UX)
│ ├── Chat Interface
│ │ ├── Real-Time Messaging (WebSockets)
│ │ ├── Multi-threaded View (Nested Chats)
│ │ ├── Quick Replies & Suggestions
│ │ ├── Multi-Language Translation
│ │ └── Voice, Image, Video Support
│ │
│ ├── User Profile Management
│ │ ├── Account Settings
│ │ ├── Language Preferences
│ │ └── Notification Settings
│ │
│ ├── Analytics Dashboard
│ │ ├── Conversation Metrics
│ │ ├── Engagement Heatmaps
│ │ └── Real-time Interaction Logs
│ │
│ └── Advanced Features
│ ├── Drag-and-Drop Media Upload
│ ├── Real-time Preview (Images, Video)
│ └── Predictive Typing & Contextual Suggestions
│
├── Backend (Microservices & Context Management)
│ ├── API Gateway
│ │ ├── Routing Logic
│ │ ├── Rate Limiting
│ │ └── Authentication & Authorization (OAuth, JWT)
│ │
│ ├── Microservices
│ │ ├── ChatGPT Service
│ │ │ ├── NLP Processing
│ │ │ ├── Intent Recognition
│ │ │ └── Context Switching
│ │ │
│ │ ├── DeepSeek Service
│ │ │ ├── Real-time Web Scraping
│ │ │ ├── Data Aggregation (Live Data)
│ │ │ └── Market Analysis & Search
│ │ │
│ │ └── Gemini Service
│ │ ├── Image Recognition
│ │ ├── Video Analysis
│ │ └── Object Detection & Processing
│ │
│ ├── Context Manager
│ │ ├── Session State Management (Redis)
│ │ ├── User-Specific Data Caching
│ │ └── Multi-Session Continuity
│ │
│ └── Real-Time Sync & Notifications
│ ├── WebSockets
│ ├── Push Notifications
│ └── Live Data Sync (Firebase)
│
├── Database Layer
│ ├── MongoDB
│ │ ├── Chat History
│ │ ├── User Preferences
│ │ └── Intent Mappings
│ │
│ ├── Redis
│ │ ├── Session Data
│ │ ├── Real-time Caching
│ │ └── Contextual Snapshots
│ │
│ └── Firebase
│ ├── Real-time Sync
│ └── Multi-user Synchronization
│
├── Security & Compliance
│ ├── Authentication
│ │ ├── OAuth 2.0 (Google, Facebook, Microsoft)
│ │ └── JWT for Secure Sessions
│ │
│ ├── Data Protection
│ │ ├── AES-256 Encryption
│ │ ├── GDPR Compliance
│ │ └── CCPA Compliance
│ │
│ └── Role-Based Access Control (RBAC)
│ ├── Admin Roles
│ ├── User Roles
│ └── Guest Roles
│
├── Integration Services
│ ├── CRM (Salesforce, HubSpot)
│ ├── CMS (WordPress, Drupal)
│ ├── E-commerce (Shopify, WooCommerce)
│ └── Payment Gateways (Stripe, PayPal)
│
└── DevOps & Deployment
├── Docker & Kubernetes
├── CI/CD Pipeline
├── Cloud Hosting (Google Cloud, AWS, Azure)
└── Load Balancing & Scaling
Multi-Modal Chatbot - Real-Time Messaging & Multi-Threaded View
Real-Time Messaging
Multi-Threaded View
Chat 1
You: Hello!
Server: Hi there!
Multi-Modal Chatbot — Conceptual Code
// Real-Time Messaging via WebSocket const socket = new WebSocket('wss://your-websocket-url'); socket.onopen = () => console.log('Connected to server'); socket.onmessage = (e) => { const { user, message } = JSON.parse(e.data); displayMessage(user, message); }; socket.onclose = () => console.log('Disconnected'); function sendMessage(user, message) { if (socket.readyState === WebSocket.OPEN) { socket.send(JSON.stringify({ user, message })); } } function displayMessage(user, message) { const box = document.getElementById('chatMessages'); const msg = document.createElement('div'); msg.textContent = `${user}: ${message}`; box.appendChild(msg); box.scrollTop = box.scrollHeight; } // Multi-Threaded Chat View const threads = { General: [], Support: [] }; let activeThread = 'General'; function switchThread(thread) { activeThread = thread; document.getElementById('chatMessages').innerHTML = ''; threads[thread].forEach(({ user, message }) => displayMessage(user, message)); } function sendToActiveThread(user, message) { if (!message) return; threads[activeThread].push({ user, message }); sendMessage(user, message); displayMessage(user, message); }
Embed this code in your chatbot system for real-time multi-threaded chat capabilities.
If you have an idea or need AI conceptual models developed, feel free to contact us — we’d love to bring your vision to life. Contact Us